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Abstract: In India, reservoirs are not only used for irrigation and electricity generation; they also 

play a critical role in flood prevention. During floods, water is stored, kept, and released from 

reservoirs for a variety of purposes. As a result, it is vital to efficiently utilize the reservoir's water 

in order to meet competing objectives. To optimize a large-reservoir system, thorough research 

and the development of system analytic methodologies, such as soft computing approaches, are 

required. In the current study, the Omkareshwar Sagar Project (OSP) Reservoir in India was 

optimized for target storage generation in order to satisfy annual demands, safeguard against 

flooding, and increase power generation. To ensure that the findings are as precise as feasible by 

Moth Flame Optimization (MFO), the OSP reservoir operations are optimized under two distinct 

monsoon situations. Optimized To maximize power output and satisfy the storage aim, a flood-

proof system is required. Additionally, this work highlights the utility of Moth Flame Optimization 

in optimizing complex water resource systems. 
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1. Introduction 

Along with irrigation, electricity, navigation, and flood control, reservoirs have a significant 

economic impact on a country, especially India. Among the reservoir's conflicting but critical 

objectives are flood protection, maximization of power generation, and storage for future use. 

During floods, water is stored, kept, and released from reservoirs for a variety of purposes. As a 

result, it is necessary to efficiently utilize the reservoir's water for a number of purposes in order 

to accomplish the varied objectives. To optimize a large-reservoir system, extensive study and 

development of system analytic tools, particularly soft computing approaches, are required. As a 

result, reservoirs that perform many roles must be well-maintained to ensure proper operation and 

administration. 

Optimization of the operations of a multipurpose reservoir requires methodical research. To 

optimize reservoir operations, both traditional and novel optimization techniques have been 
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developed and used. The conventional reservoir operating approaches include linear programming 

(LP), non-linear programming (NLP), and dynamic programming (DP). Regardless of their 

efficiency, these strategies have a number of disadvantages. While LP requires a linear objective 

function and restrictions, DP is bound by its dimensionality, and NLP is unable to efficiently 

address the non-convex issue on its own [1]. [2] optimized hydropower generation in a multi-

reservoir system using Non-Linear Programming (NLP). [3] used a combination of natural 

language processing and machine learning techniques to plan multifunctional reservoir operations. 

However, the quest for novel optimization algorithms capable of yielding globally optimal 

solutions is continuing. [4] addresses contemporary optimization methods in the planning, 

engineering, and management of water resources in depth. [5] created the Moth Flame 

Optimization (MFO) algorithm, which is one of various soft computing strategies. It is informed 

by moth behavior and a population-based approach inspired by nature. The use of the MFO 

algorithm for water resources is very recent, and Zhang et al. (2020) describe a few studies that 

use an upgraded version of the R-domination improved Moth Flame Optimization (R-IMFO) 

technique to cascade reservoir operation in the context of ecology and navigation. 

These studies show that MFO is a robust method for finding global optimal solutions in the realm 

of water resources, and thus it is generally applicable. As part of this research, the Indian 

Omkareshwar Sagar Project Reservoir (OSP) was designed to meet annual demands, protect 

against flooding, and increase power generation. The Moth Flame Optimization (MFO) technique 

is used to optimize OSP reservoir operations for two separate monsoon flood wave scenarios and 

is also compared with the results of NLP (a conventional method) in order to test the accuracy of 

the results. 

 

2. Moth Flame Optimization 

Seyedali Mirjalili developed the Moth Flame Optimization (MFO) approach in 2015. Moth 

behaviour and a population-based approach are the foundations of this method. As a butterfly 

family member, the moth is drawn to light (light bulbs and the moon as they activate at night). 

Moths always migrate in the direction of the light source, despite the fact that they fly in a straight 

line and maintain an angle with the light source. There's a lot to be said for the moth-based 

algorithm's capacity to traverse all four dimensions of space. The best outcome of the algorithm 

can be determined by using only two parameters. How many moths are in a population, and how 

much iteration is there? 

To find the best optimal solution from MFO: 

MOi = S[MOi, Fj]       (1) 

Where, MOi = ith moth, Fj = jth flame and S= Spiral function 

It is crucial to note that in this circumstance, both the moth and the flame are valid options. Moths 

act as search agents (for population), and flames supply the moths with the ideal place. 

The logarithmic spiral is utilized to find spiral function: 

S (MOi, Fj) =  Di ∗ ebt ∗ cos(2πt) + Fj    (2) 

Where Di = Distance of ith moth from the jth flame can be found by: 
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Di = lFj − Mll      (3) 

b = The logarithmic spiral's shape defining constant, and t = A random number between [-1, 1]. 

For further space exploration and exploitation, t can be written as [r, 1], where r is a convergence 

constant that decreases linearly with iteration from -1 to -2. 

To avoid local optima, each moth gets one flame. In this way, each moth has an equal chance to 

investigate each flame's search zone. To optimize the utilization of the ideal solution, the number 

of flame mechanisms is reduced with each iteration. 

Flame no. = round (N − l 
N−1

T
)     (4) 

Where, l = Current no of iteration, N = Maximum no of flame, and T = Maximum no of iteration 

 

3. Study Area 

The Omkareshwar Sagar Project reservoir is 53 meters high and 949 meters long, with eight 65 

MW units. The reservoir's 987 Mcm gross capacity irrigates over 146,800 hectares of cropland. 

The OSP is situated between the Indira Sagar Project in Madhya Pradesh and the Sardar Sarovar 

Project in Gujrat, India. ISP is a huge reservoir that already discharges water under controlled 

conditions. The mandatory water release for SSP has made OSP more difficult to run. To protect 

the downstream reservoir from flooding, increase power output, target storage for future use, and 

ensure that the downstream reservoir receives the necessary release, OSP must be engaged. 

 

4. Model Formulation 

The objective function is defined by the above objectives. A continuity constraint is added to the 

objective function. The hydroelectric release is kept constant at 6.8 per hour.  

 

Min[∑ 𝐕𝟏(𝐎𝐭)
𝟐𝐓

𝐭=𝟏 + 𝐕𝟐(𝐒𝐭+𝟏 − 𝐒𝐭 − 𝐈𝐭 + 𝐎𝐭 + 𝐎𝐩𝐭)𝟐 + ∑ 𝐕𝟑(𝐒𝐭 − 𝐓𝐬)𝟐𝐓+𝟏
𝐭=𝟐 ]  

 (5) 

 

Where, 

Exit via Spillway, referred to as Ot When the turbine's output is selected as "Opt," St is the amount 

of storage at time t, and St+1 is the amount of storage at time t+1, respectively. The reservoir's 

target storage capacity is referred to as "Ts." Ot max is the maximum amount of water that can exit 

the spillway at one time. Minimum spillway outflow (Otmin) and maximum turbine outflow (Otmax). 

The objective function is constrained by the limitations on the values of the variables that are used. 

Otmin  ≤ Ot  ≤ Otmax    (6) 

Optmin  ≤ Opt  ≤ Optmax    (7) 

Stmin  ≤ St ≤ Stmax      (8) 

V1 is the spillage weight, V2 is the continuity equation weight, and V3 is the desired storage 

weight at the completion of the reservoir operation. Today's task has 25 values for release and 

storage. Multiple objective problems can be solved as a single problem by adjusting weights. 
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5. Result and Discussion 

The OSP is utilized in this study to optimize reservoir operation while also optimizing power 

output, achieving target storage for future use, protecting the downstream side from flooding, and 

meeting the downstream side reservoir's mandated release. The non-linear model proposed above 

is optimized for two distinct inflow scenarios during the monsoon season, each representing a 

different flow state. Hydropower release is held constant at its maximum value of 6.8 Mcm to 

maximize power generation. The objective function assigns the following weights: V1 = 0.1, V2 

= 100, and V3 is randomly adjusted between 0.00001 and 100,000, from lower to higher value, for 

each inflow value of the flood wave. The heuristic method used to allocate these weights ensures 

that the study's several objectives are accomplished in the order in which they were prioritized at 

the outset. The objective function is optimized using Moth Flame Optimization with a population 

size of 20 and 500 iterations. Fig. 1 illustrates the convergence of two flood input scenarios for the 

duration of the monsoon to an ideal solution. At first glance, it appears as though all of the inflow 

scenarios had suboptimal results, as illustrated in the image. However, after 200 iterations, the 

MFO converges on the optimal fitness value for both inflow circumstances. 

 
Fig. 1 Convergence of MFO to best fitness value for both flood inflow scenarios 

 

Two distinct flood inflow scenarios are evaluated to determine the algorithm's accuracy in 

achieving the target storage of 299 Mcm. The MFO results were also compared to the NLP results. 

Fig. 2 illustrates a comparative; gradually increasing storage plot for each flood wave inflow value 

calculated using NLP and MFO for two distinct flood inflow scenarios. It is obvious from all of 

the portions of Fig. 2 that both models take a fairly similar path to reach destination storage with 

very slight changes. The final storage estimates derived by NLP and MFO for two distinct flood 

inflow scenarios are shown in Table 1. The model is compressed based on the near target storage 

value achieved by NLP and MFO in terms of Mcm and %. When examining Table 1, it is evident 

that the average percentage of target storage attained by NLP and MFO for the two separate flood 

inflow scenarios is 97.08 percent and 97.49 percent, respectively, indicating that MFO performs 

well in obtaining near-target storage. 
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Fig. 2 Comparative gradually increasing storage plot from NLP and MFO different flood inflow 

scenarios type (a) I, (b) II 

 

Table 1 Target storage (299 Mcm) achievement by NLP and MFO for different flood inflow 

scenarios 

Flood Inflow 

Scenario 

NLP MFO 

Storage (Mcm) % Achieved Storage (Mcm) % Achieved 

I 290.221 97.0637 292.549 97.8423 

II 290.335 97.1019 290.465 97.1456 

 

The comparison inflow and outflow charts generated by NLP and MFO for two distinct flood 

influx scenarios are shown in Fig. 3. The discharge generated by MFO follows the form of the 

hydrograph and also follows the path generated by NLP with very slight deviations. The MFO 

generates outflow hydrographs that are smooth in shape, lower the peak of floods to safeguard the 

downstream reservoir, and also release the mandatory release for the downstream reservoir. 

  

  
Fig. 3 Comparative inflow vs. outflow plot generated from NLP and MFO in different flood inflow 

scenarios type (a) I, (b) II 

 

The flood peak is shown in Table 2 for two alternative flood input scenarios using NLP and MFO. 

The model is compressed based on the flood peak being decreased in Mcm and percentage terms 

using NLP and MFO. While examining Table 2, it is clear that the average percentage of flood 

 

(a) 

 

(b) 

 

 

(a) 

 

(b) 

 

 

(a) 

 

(b) 

 

 

(a) 

 

(b) 

 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

4609                                                                http://www.webology.org 
 

peak reduction achieved by NLP and MFO for the two flood inflow scenarios is 33.78 percent and 

33.45 percent, respectively, indicating that MFO performs the same as NLP (the conventional 

method) in terms of reducing flood peak to protect the downstream side in conjunction with 

mandated release. 

 

Table 2 Flood peak reduced by NLP and MFO for different flood inflow scenarios 

Flood Inflow 

Scenario 

Flood Peak 

(Mcm) 

NLP MFO 

Flood peak 

Reduced 
% Reduced 

Flood peak 

Reduced 
% Reduced 

I 69.96 49.21 29.660 49.77 28.859 

II 52.82 32.73 37.902 32.61 38.263 

 

The MFO findings for both flood inflow scenarios indicate that they perform admirably in all 

respects, including maximizing hydropower output, achieving target storage, protecting against 

flooding, and meeting mandated release for the downstream side reservoir. Additionally, the MFO 

findings were evaluated against standard NLP results, and it was determined that MFO may be 

used to optimize reservoir operation difficulties during flood situations. 

 

6. Conclusion 

The OSP reservoir is optimized for hydropower generation, target storage for future use, and flood 

prevention on the downstream side of the reservoir, utilizing Moth Flame Optimization and Non-

linear Programming to solve a non-linear model. This non-linear model is then used to satisfy the 

mandated release for the downstream reservoir. The MFO algorithm was used to optimize two 

distinct flood inflow scenarios that correspond to two distinct monsoon conditions. For a 

population size of 20, the best fitness outcomes are obtained by iterating the MFO algorithm for 

500 iterations. The MFO method, on the other hand, obtained the global optimal solution after 

only 300 iterations, demonstrating the MFO's speed and robustness. Maintaining a consistent 

hydropower release value has resulted in the highest power generation. Both NLP and MFO 

obtained average near-target values of 97.08 percent and 97.49 percent, respectively, for both flood 

inflow scenarios, indicating that MFO performs as well as the traditional NLP method. The 

average flood peak is decreased by 33.78 percent and 33.45 percent, respectively, by NLP and 

MFO, which helps safeguard the downstream from flood conditions and also meets the 

downstream side reservoir's mandated release. This work also shows that Moth Flame 

Optimization can be used to optimize very large and complex water resources. 
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